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Abstract

In this contribution various aspects for a plasticity model coupled to damage are considered. The formulation of

the model is performed in the intermediate con®guration which occurs as a consequence of the multiplicative
decomposition of the deformation gradient. We will resort to thermodynamic consistency, continuous tangent
operator, algorithmic tangent operator and sensitivity analysis for parameter identi®cation. Furthermore, for the
discretized constitutive problem a robust iteration scheme with a two-level algorithm is proposed. In the numerical

example material parameters are determined by least-squares minimization based on experimental data obtained
with an optical method. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The extensive loading of metallic structures leads to
degradation of mechanical properties up to complete
failure, and this progressive physical process is com-
monly referred to as damage. Various manifestations

of damage have been described in the literature, such
as creep damage, low cycle fatigue, high cycle fatigue
and brittle damage [1]. The present paper is concerned

with isotropic ductile damage, which is induced by
large plastic deformations.
Metallographic studies [2,3] demonstrate that ductile

damage is basically characterized by three mechanisms
of void growth: (i) nucleation of voids due to fracture
of particle±matrix interface, failure of the particle or
micro-cracking of the matrix surrounding the in-

clusion; (ii) growth of voids, thus leading to an enlar-
gement of existing holes; and (iii) coalescence or

micro-cracks linking neighbouring voids, thus leading
to vanishing load carrying capacity of the material, as

the void volume fraction approaches unity.
It appears that mainly two di�erent conceptions can

be found in the literature in order to model ductile
damage e�ects: micro-mechanical damage models and

phenomenological damage models. A model of the ®rst
kind is formulated by Gurson [4], where he derived a
yield potential for porous plastic materials from simple

cell models. Modi®cations have been proposed to
improve the predictions at low void volume fractions
[5] and to provide a better representation of ®nal void

coalescence [6]. In this way micro-mechanical models
are based on physical soundness, and various appli-
cations have modelled void growth and ductile rupture,
see e.g. [5±8]. However the identi®cation and determi-

nation of the associated micromechanical material par-
ameters is still a rather new approach with no
generally accepted recommendations. It can be done

by combining metallurgical examinations with cell
modelling and macroscopic testing results [8,9].
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Phenomenological damage models are based on the

concept of Kachanov [10], who was the ®rst to intro-
duce for the isotropic case a one-dimensional variable,
which might be interpreted as the e�ective surface den-

sity of microdefects per unit volume ([1], p. 12). The
damage variable is combined with the e�ective stress
concept in order to relate the e�ective stresses, acting

on the undamaged material, to the nominal stresses,
acting on the damaged area. This allows the appli-

cation of the strain equivalence principle in order to
formulate constitutive equations in terms of the e�ec-
tive stresses without modi®cations of known constitu-

tive models (see Lemaitre [1], p. 13�). Because of the
irreversible nature of the damage process thermodyn-
amic concepts have been proposed for the geometric

linear case, in which the damage variable is regarded
as an internal variable (see e.g. [11±13]). Extensions to

the framework of ®nite deformations are presented e.g.
by De Souza et al. [14] or Steinmann et al. [15].
The model of this work is a modi®cation of a pre-

vious representation for ®nite elasto-plasticity
described by Miehe [16], whereby in the above-men-

tioned three approaches are incorporated: (i) a scalar
damage variable; (ii) the e�ective stress concept; and
(iii) the strain equivalence principle. The formulation is

obtained relative to the intermediate con®guration
which occurs as a consequence of the multiplicative de-
composition for the deformation gradient into an elas-

tic and a plastic part. The elastic response is
formulated in terms of elastic logarithmic strains,

where the total elastic part of the free energy is
coupled to damage. The choice of a proper dissipation
potential leads to rate equations for the evolution of

plastic gliding, isotropic hardening and damage. The
above-mentioned choice for the coupling of elasticity
and damage is regarded as an extension to the formu-

lation of Steinmann et al. [15], where only the isocho-
ric part of the free energy is coupled to damage. As a

consequence, the evolution equation for damage is
able to simulate the experimental observation that void
growth is highly in¯uenced by the triaxiality ratio

which is an important feature in the process of the
rupture of materials [3,17].
Furthermore thermodynamic consistency of the con-

stitutive relations can be easily veri®ed, and we derive
the continuous tangent operator relative to the inter-

mediate con®guration, which relates the rate of
Mandel stresses to its work conjugate velocity gradi-
ent.

The use of an exponential type integration scheme
for the ¯ow rule, as proposed by Weber and Anand

[18] and Eterovic and Bathe [19] results in a nonlinear
problem in the principal directions of the elastic left
Cauchy Green trial tensor. This problem can be

reduced to a two-dimensional system of equations and
is solved with a two-level scheme as proposed by

Johansson et al. [20]. The strategy allows the combi-
nation of (i) one-dimensional iteration schemes (bisec-

tion or pegasus method), which show superior global
convergence properties, with (ii) the Newton scheme,
which shows only a superior local convergence prop-

erty.
The additional task of ®nding the material par-

ameters for the modelÐwhich in the mathematical ter-

minology is an inverse problem [21±23]Ðis based on
experimental testing. In classical approaches the speci-
men is loaded at the heads (force or displacement con-

trolled), and then experimental data are obtained at
certain points of the sample assuming uniform distri-
bution of all stress or strain quantities within the
sample. However, very often the uniformness is di�-

cult to preserve during the experiment (see e.g.
Lemaitre [1] p. 22). Therefore, in this contribution
spatially distributed data are used, which are obtained

with an optical method [24,25]. Then it is the object to
minimize the distance of these data to spatially distrib-
uted data obtained from ®nite element computations

in a least-squares sense by varying the material par-
ameters. This approach, including the corresponding
sensitivity analysis is described e.g. by Mahnken and

Stein [26] for the geometric linear theory, and in
Mahnken and Stein [27] it has been extended to the
geometric nonlinear case based on an algorithm
described by Simo [28].

An outline of this work is as follows: in Section 2
the constitutive equations of the damage model by use
of tensor quantities relative to the intermediate con-

®guration are summarized. Then thermodynamic con-
sistency of the model is shown and a continuous
tangent operator, also relative to the intermediate con-

®guration, is derived. In Section 3 a robust two-level
algorithm is proposed, in order to solve the discretized
constitutive problem. The algorithmic tangent oper-
ator, needed for the application of a Newton-scheme

in the equilibrium iteration, and the sensitivity load
term, needed for the application of a gradient-based
optimization scheme (e.g. Gauss±Newton method,

quasi-Newton method) for parameter identi®cation,
are derived in Section 4. For illustrative purposes, in
Section 5 material parameters are determined by least-

squares minimization based on experimental data
obtained with an optical method.

1.1. Notations

Square brackets [ � ] are used throughout the paper
to denote `function of' in order to distinguish from
mathematical groupings with parentheses ( � ).
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2. Formulation of the model equations

2.1. Notation and kinematics of multiplicative
elastoplasticity

Let B0WR3 be the reference con®guration of a con-
tinuum body B with smooth boundary @B0, I=[t0,
T ] $ R+ the time interval of interest and K a (vector)

space of admissible material parameters. We consider
the con®guration ®eld jjj�X,t,kkk� in terms of the three
independent variables XWB0, tWI and kkk �K. Thus

jjj��,t,kkk�: B0 4 R3 de®nes a nonlinear deformation map
at time tWI for given material parameters kkk �K
mapping particles XWB0 to their actual position
xWB in the deformed con®guration. The associated

nonlinear deformation gradient F � rXjjj�X,t,kkk� with
J= detF de®nes a mapping of increments dXWTB0

of a locally de®ned tangent space TB0 associated with

the undeformed con®guration to increments dxWTB
of a locally de®ned tangent space TB associated with
the deformed con®guration. Here and if not stated

otherwise also in the subsequent presentation, explicit
indication of the arguments t and kkk is omitted.
Furthermore we endow the tangent spaces TB0 and

TB with co-variant metric tensors G[ and g[, respect-
ively.
The time and parameter derivatives of the con®gur-

ation ®eld are denoted by _jjj � @ tjjj and @kkkjjj, respect-
ively. For the subsequent representation, we will also
introduce kinematic expressions by replacing the time
derivative @t( � ) or the parameter derivative @kkk��� by its

variational counterparts @d ( � ) and @D( � ), respectively,
where now @d ( � ) and @D( � ) are short-hand notations
for the GaÃ teaux derivative at the point x � jjj�X,t,kkk� in
the direction of the virtual variation du and increment
for linearization Du, respectively. With the above nota-
tion di�erent kinematic variables and associated de-
rivatives can be de®ned [27]. Some examples for

velocity gradients, rate of deformation tensors and Lie
derivative operators are as follows:

l � rx@ tjjj d � sym�g[ � l�

L#
t ��� � F � @ t�Fÿ1 � ���# � Fÿt� � Ft

L[
t ��� � Fÿt � @ t�Ft � ���[ � F� � Fÿ1

lkkk � rx@kkkjjj dkkk � sym�g[ � lkkk�

L#
kkk��� � F � @kkk�Fÿ1 � ���# � Fÿt� � Ft

L[
kkk��� � Fÿt � @kkk�Ft � ���[ � F� � Fÿ1

ld � rx@ djjj dd � sym�g[ � ld�

L#
d ��� � F � @ d�Fÿ1 � ���# � Fÿt� � Ft

L[
d��� � Fÿt � @ d�Ft � ���[ � F� � Fÿ1

lD � rx@Djjj dD � sym�g[ � lD�

L#
D��� � F � @D�Fÿ1 � ���# � Fÿt� � Ft

L[
D��� � Fÿt � @D�Ft � ���[ � F� � Fÿ1

�1�

where ( � )# and ( � )[ denote a contra-variant and co-

variant tensor object, respectively. The underlying con-
cept of multiplicative elastoplasticity assumes the de-
composition

F � Fe � Fp �2�

where Fe and Fp represent the elastic and plastic part
of F, respectively, and which implies a plastic inter-

mediate con®guration Bp as macro stress free. Based
on the assumption (2) an elastic pull-back of the vel-
ocity gradient l=F

. � Fÿ1=F
.
e � Fÿ1e +Fe � F

.
p � Fÿ1p � Fÿ1e

yields for the velocity gradient relative to the inter-
mediate con®guration L

-
=Fÿ1e � l � Fe with additive de-

composition

ÅL � ÅL e � ÅL p �3a�

where

ÅL e: � Fÿ1e � ÇF e �3b�

and

ÅL p: � ÇF p � Fÿ1p �3c�

As noted by Miehe [16], this decoupled representation

for the evolution of elastic and plastic deformation is
possible within a geometric setting relative to the inter-
mediate con®guration in terms of mixed-variant (con-

tra-covariant) tensor ®elds L
-
e and L

-
p.

In what follows we will also consider the elastic
right Cauchy±Green tensor de®ned on the intermediate

con®guration

Ce � Ft
e � g[ � Fe �4�

and the multiplicative split

Ce � J 2=3
e

ÃC e, where Je � � det Ce�1=2 �5�

Consequently CÃ e and Je represent the isochoric and
volumetric part of the elastic deformation, respectively.
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2.2. Free energy and thermodynamic forces

The starting point for a thermodynamic consistent
model suitable for ductile materials is the following
Helmholtz free energy:

C � �1ÿ a�Cel�Ce� �Cp�q� �6a�

where

Cel � Cvol�Je� �Ciso� ÃC e� �6b�

Cvol � 1
2K� ln Je�2 �6c�

Ciso � G

4
�tr� ln ÃC e�2� �6d �

Cp � c

�
q� 1

b
exp�ÿbq�

�
�6e�

Here the decoupled form for the elastic part is based
on the volumetric-isochoric split, Eq. (5), for the elastic

right Cauchy±Green tensor with corresponding bulk
modulus K and shear modulus G, respectively. The
damage variable a represents local degradation of the
elastic properties, and q is a strain-like internal vari-

able describing the state of the material at the micro
level induced by dislocations with associated material
parameters c and b. The above formulation is the ana-

log of the Helmholtz free energy within a geometrically
linear `state kinetic coupling theory' formulated by
Lemaitre ([1], p. 42). In particular, state coupling of

damage with elastic strain as shown experimentally is
assumed, but there is no state coupling either between
plasticity and elasticity or between damage and plas-

ticity. The formulation (6e) gives the classical ex-
pression for isotropic hardening with saturation for
large plastic strain.
Thermodynamnic formulations for isothermal pro-

cesses are based on the principle of positive dissipation

D � Pÿ _Cr0 �7�

Using tensor quantities relative to the actual con®gur-
ation the stress-power is given as a dual pairing P �
ttt:d with the (contravariant) Kirchho� stress tensor ttt
and the (covariant) spatial rate of deformation tensor
d=sym(g[ � l), whereas with tensor quantities relative
to the reference con®guration we have P=S:D in

terms of the (contravariant) second Piola±Kirchho�
stress tensor S � Fÿ1 � ttt � Fÿt and a (covariant) material
rate of deformation tensor D=Ft � d � F=sym(F

. t � F).
Following Miehe [16], alternatively the stress power
can be written relative to the intermediate con®gur-
ation as P=T

-
:L
-
, where T

-
=Ft

e � g[ � ttt � Fÿt
e is the

mixed variant (co-contravariant) Mandel stress tensor,
and L

-
is the total velocity gradient introduced in the

previous section. Consequently, using the additive
decomposition, Eqs. (3a)±(3c), and the identity
@C/@Ce:C

.
e=2(Ce � @C/@Ce):L

-
e the dissipation (7)

results into

D �
�

ÅT ÿ 2Ce � @C
@Ce

�
: ÅL � 2Ce � @C

@Ce

: ÅL p ÿ @C
@q

_q

ÿ @C
@a

_ar0 �8�

Employing the standard argument of thermodynamics,
that the above relation holds for all processes L

-
,

implies T
-
=2Ce � @C/@Ce and thus for the logarithmic

model, Eqs. (6a)±(6c) it follows:

ÅT � �1ÿ a� ÃÅT , with ÃÅT � ÃÅT
vol � ÃÅT

iso

and �9a�

ÃÅT
vol

� p1, p � K ln Je �9b�

ÃÅT
iso

� G ln Ĉe � G dev ln Ce � ÃÅT
dev

�9c�

The relations (9a)±(9c) express the e�ective stress con-
cept (see Lemaitre [1], p. 42), thus relating the `nom-
inal' Mandel stress tensor T

-
to the e�ective Mandel

stress tensor ÃÅT acting on the remaining undamaged
material.
For subsequent purposes we de®ne the hardening

variable Q and the damage energy release rate A as the

thermodynamic forces conjugate to the internal vari-
ables q and a as

Q � @C
@q
� c�1ÿ exp�ÿbq��

A � @C
@a
� ÿ p2

2K
ÿ 1

4G
k ÃÅT

dev

k2 �10�

Here the relations Cvol=(1/2)K(ln Je)
2=p 2/(2 K )

and Ciso=(1/4)Gtr(ln CÃ e)
2=k ÃÅT devk2/(4G ) have been

exploited.

2.3. Dissipation potential and evolution of internal
variables

In order to describe plasticity of ductile materials a

separate potential of dissipation F� is introduced
depending on the e�ective Mandel stress ÃÅT , the hard-
ening variable Q and the damage energy release rate A

as a sum of two functions

F� � F�p� ÃÅT ,Q� � F�d�A� �11�

R. Mahnken / Computers and Structures 74 (2000) 179±200182



Note, that the formulation for F�p is in accordance
with the principle of strain equivalence, whereby the

yield criterion is written in the same way as for the
nondamaged material except that the stress tensor T

-
is

replaced by the e�ective stress tensor ÃÅT . For de®nite-

ness we choose for the plastic potential F�p and the
damage potential F�d

F�p � k ÃÅT
devk ÿ

����
2

3

r
�Y0 �Q�

F�d �
�ÿA�2

2S�1ÿ a�mT�q� �12�

where the threshold function T[q ] has been intro-
duced, in order to activate damage only if a certain

limit E1 has been obtained for q (see Lemaitre [1], p.
96). A possible choice for T is the Hermitian poly-
nomial

T�q;E1,E2� � 0 if qRE1

T�q;E1,E2� � �qÿ E1�2
�E2 ÿ E1�2

�
3ÿ 2

qÿ E1
E2 ÿ E1

�
if E1 < q < E2

T�q;E1,E2� � 1 if E2Rq �13�
which due to its smoothness is of advantage for the

numerical implementation, see Johansson et al. [20]. It
follows that E1,E2 can be regarded as material par-
ameters.

The evolution for the set of internal variables
� ÅL p, _q ,_a � is now proposed based on the principle of
generalized normalities as

ÅL p � _l
@F�

@ ÅT
�

_l
1ÿ a

ÅM , where

ÅM � @F�p

@ ÃÅT
� �

ÃÅT
dev

�t

k ÃÅT
dev

k

�14a�

_q � ÿ_l
@F�

@Q
� ÿ_lMq, where

Mq �
@F�p
@Q
� ÿ

����
2

3

r �14b�

_a � ÿ_l
@F�

@A
� ÿ_lMa, where

Ma � @F�d
@A
� A

S�1ÿ a�mT�q�
�14c�

The scalar _l is the plastic multiplier obtained from the

loading and unloading conditions

_lr0

FYR0

_lFY � 0 �15�

where FY is the yield function. In the simplest case we

set

FY � F�p � k ÃÅT
dev

k ÿ
����
2

3

r
�Y0 �Q� �16�

Remark 1. Note, that due to the choices, Eq. (12), the
above evolution equations (14a)±(14c) exhibit an as-

sociated ¯ow rule for the evolution of plastic ¯ow and
hardening evolution but a nonassociative ¯ow rule for
the damage evolution.

Remark 2. The evolution rule a speci®ed by Eq. (14c)
predicts the rate of a to be proportional to the conju-

gate thermodynamic force A. This implies the identical
growth of a for both positive and negative hydrostatic
stress. However for certain materials (e.g. brittle ma-

terials) and certain loading conditions the defect may
close in compression and reopen in tension. Following
Lemaitre [1], this `microcrack closure reopening'
(MCR) e�ect can be incorporated into the above con-

stitutive equations by a straightforward modi®cation.
An example within the geometric linear setting is pro-
posed by Johansson et al. [20].

Remark 3. Upon de®ning the invariants

sv: �
����
3

2

r
k ÅT

devk

sh: � 1

3
tr� ÅT �

_e v: �
����
2

3

r
k ÅL pk �17�

for the Mandel stress tensor and the plastic part of the
velocity gradient relative to the intermediate con®gur-

ation, the evolution equation for the damage variable
(14c) can be rewritten as

_a � ÿ _e v

�A

S�1ÿ a��mÿ1�T�q�

where
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�A � ÿ s2v
�1ÿ a�2

 
1

2K

s2h
s2v
� 1

6G

!
�18�

The presentation (18) reveals that evolution of damage

is proportional to the accumulated plastic strain rate
e
.
v, which is in accordance with the analytical investi-
gations for ductile growth of voids by Rice and Tracey

[17]. Furthermore, as noted by Lemaitre ([1], p. 44 and
p. 97), the triaxiality ratio sh/sv, plays a very import-
ant role in the rupture of materials (see also Rice and

Tracey [17]). The presentation (18) shows an increase
of damage evolution with increasing sh/sv, which is in
agreement with the experimental observation, that the
measured ductility at fracture decreases as the triaxial-

ity ratio increases [2,3]. In this respect the formulation
(14c) is regarded as an important modi®cation to the
formulation presented by Steinmann et al. [15], and, as

it will be seen later, has some consequences in the nu-
merical implementation. Lastly we note that, due to
the factors (1ÿa ) in the denominators of the presen-

tation (18), an increase of damage evolution with
increasing a is obtained for m > 0.

2.4. Thermodynamic consistency

According to the second law of thermodynamics the

dissipation inequality (7) must be satis®ed for the evol-
ution equations (14a)±(14c). Here only the loading
case _l > 0, FY=0 shall be considered, since the

unloading case with _l � 0 is trivial. Combining the re-
lations (14a)±(14c), (10), (8) entails writing

D � ÅT : ÅL p ÿQ _q ÿ A_a

� _l

0@1ÿ a
1ÿ a

ÃÅT
dev

:
ÃÅT

dev

k ÃÅT
dev

k
ÿQ

����
2

3

r
� A2

S�1ÿ a�m T�q�
1A

� _l

 ����
2

3

r
Y0 � A2

S�1ÿ a�m T�q�
!
> 0

The last relation is obtained from the yield function
(16) for the case of loading with FY=0.

2.5. Summary of material parameters

We are now in a position to summarize all material
constants of the model, characterizing the inelastic

behavior, which, apart from the elastic constants K
and G, have to be calibrated based on experimental
data

kkk � �Y0,c,b,S,m,E1,E2�t �19�

In order to be physically meaningful the material par-
ameters are restricted to lower and upper bounds ai,bi,

respectively. These constraints then de®ne the feasible
domain K, such that

kkk 2K � Rnp

K: � fkkk:aiRkiRbi,i � 1, . . . ,npg �20�

where np=dim(kkk� � 7 denotes the number of material
parameters.

2.6. Continuous tangent operator

Continuous consistent tangent operators relate time
derivatives of some stress tensor to its work conjugate

rate of deformation tensor. In the framework of multi-
plicative plasticity these relations, which can be
regarded as counterparts of so-called Prandtl±Reuss

tensors of the geometric linear theory, have been ®rstly
derived by Miehe [16] for associative ¯ow rules without
hardening and furthermore by Steinmann [29], where

additionally damage has been taken into account. In
what follows we will derive an operator Apl

0 , which
relates the time derivative of Mandel stresses T

-
to the

velocity gradient L
-

relative to the intermediate con-

®guration as

ÇÅT �Apl
0 :

ÅL
t �21�

Starting with ÃÅT =2Ce � @Cel/@Ce and using the relation

C
.
e=sym(Ce � L- e) the total time derivative of the e�ec-

tive Mandel stress is

ÇÃÅT �Ael
0 :

ÅL
t

e

where Ael
0 �Ael

2 � 1�
 ÃÅT
t � Ce
 ÃÅT

t � Cÿ1e

Ael
2 � Ce � �C � Ce

�C � 4
@ 2Cel

@Ce@Ce

�22�

which de®nes a fourth-order hyperelastic tensor Ael
0 .

(Here 

-

and 
 de®ne non-standard tensor products

such that (a 

-
b):c=a � c � bt, (a(
b):c=a � ct � bt, see

e.g. Steinmann [29].) Likewise, the time derivatives of
the stress like internal variables are

_Q � ÿ_lHqMq, where Hq � @ 2C
@q@q
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_A � ÿ_lHaMa, where Ha � @ 2C
@a@a

�23�

Upon introducing the de®nitions

ÅN � @FY

@ ÃÅT
�24a�

Nq � @FY

@Q
�24b�

Na � @FY

@A
�24c�

and combining the relations (22) and (23) and

L
-
e=L

-ÿ_l=�1ÿ a� ÅM the consistency condition _FY �
ÅN :

ÇÃÅT �Nq
_Q �Na _A � 0 yields the plastic multiplicator

as

_l � 1

h
ÅN :Ael

0 :
ÅL

t
, where

h � 1

1ÿ a
ÅN :Ael

0 :
ÅM �NqHqMq �NaHaMa

�25�

From Eq. (9a) it follows

ÇÅT � �1ÿ a� ÇÃÅT ÿ ÃÅT _a �26�
which combined with Eqs. (14c), (22) and (25) yields

the hyperelastic±plastic tangent operator in the inter-
mediate con®guration as

Apl
0 � �1ÿ a�Ael

0 ÿ
1

h
�Ael

0 :
ÅM

t � ÃÅT Ma� 
 ÅN :Ael
0 �27�

and which in the general case exhibits a nonsymmetric
structure.
For the logarithmic model, Eqs. (6a)±(6e), use of the

relations (see e.g. Steinmann [29])

_ln Je � 1: ÅL
t

e

_tr ln Ce � 21: ÅL
t

e �28�

expands the elastic operator Ael
0 from Eqs. (9a)±(9c) as

Ael
0 �Ael,vol

0 �Ael,dev
0 , where Ael,vol

0 � K1
 1

Ael,dev
0 � 2G

�
@ ln Ce

@Ce

� Ce ÿ 1

3
1
 1

�
�29�

Furthermore, for isotropy we have
N
-
:Ael

0 :L
- t
e=GN

-
: _ln Ce=2GN

-
:L
- t
e and thus N

-
:Ael

0=2GN
-

and N
-
:Ael

0 :N
-
=2G. From this, Eq. (27) reveals the

hyperelastic±plastic tangent operator for the logarith-
mic model as

Apl
0 � �1ÿ a�Ael

0 ÿ
2G

h
�2G� k ÃÅT kMa� ÅN 
 ÅN �30�

Note, that due to the associative ¯ow rule, the above
operator shows a symmetric structure.

3. Numerical implementation

3.1. Integration scheme

In this section the numerical integration of the evo-
lution equations (14a)±(14c) is described over a ®nite
time step Dt=n+1tÿnt for given initial data nq, na,
nCÿ1p and deformation gradient n+1F, where nCp=

nFt
p �

nFp is a plastic right Cauchy±Green strain tensor. The
starting point for numerical integration of the ¯ow
rule, Eq. (14a) is the representation

ÅL p � ÇF p � Fÿ1p �
_l

1ÿ a
ÅM

ÅM � ÅN9 ÇF p �
_l

1ÿ a
ÅN � Fp �31�

where the relations (3c), (14a), (24a) and (16) have
been combined. Then, using an exponential type of in-

tegration rule for Fp [18,19] and a backward Euler
scheme for q and a we have

n�1Fp � exp

�
Dl

1ÿ a
ÅN

�
�n Fp �32a�

n�1q �n q� Dl
���
2
3

q
�32b�

n�1a �n aÿ Dl
n�1A

S�1ÿ a�mT�n�1q� �32c�

From now on, if confusion is out of danger we will
neglect the index n + 1 referring to the actual time
step. Then, we introduce the following `trial' quantities

Ftr � F �n Fÿ1p 9Ctr � Ftrt � Ftr9Ce

� Ft
e � Fe � exp

� ÿDl
1ÿ a

ÅN

�
� Ctr

� exp

� ÿDl
1ÿ a

ÅN

�
�33�

Using the fact, that Ce, C
tr and N

-
commute (i.e. have

identical principal axes) and decomposing the logarith-
mic part of Ce into its deviatoric and its volumetric
part yields
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ln ÃC e � ln ÃC
tr ÿ 2Dl

1ÿ a
ÅN

where ÃC
tr � �J tr�ÿ2=3Ctr

J tr � det�Ftr�

ln Je � ln J tr �34�
Then, by use of Eqs. (9a)±(9c), the Mandel stresses are
decomposed as

T � �1ÿ a� ÃÅT , with ÃÅT � ÃÅT
vol

� ÃÅT
dev

and

ÃÅT
vol

� p1, p � K ln J tr

ÃÅT
dev

� ÃÅT
dev,tr

ÿ 2GDl
1ÿ a

ÅN , where ÃÅT
dev,tr

� G ln ÃC
tr

A more advantageous formulation for the ®nite el-
ement implementation is obtained relative to the actual

con®guration with the Kirchho� stresses
ttt � g# � Fÿt

e � ÅT � Ft

e. Thus, by use of the left Cauchy±
Green trial tensor

btr � Ftr � �Ftr�t � F �n Cÿ1p � Ft �36�

the Kirchho� stresses are obtained from the relations

ttt � �1ÿ a�t̂tt, with t̂tt � t̂ttvol � t̂ttdev
and

t̂ttvol � pg#, p � K ln J tr

t̂ttdev � t̂ttdev,tr ÿ 2GDl
1ÿ a

n, where t̂ttdev,tr � G dev ln btr

n � t̂ttdev

kt̂ttdevk �37�

These sets of equations can be regarded as the counter-
part of the relation (35) relative to the actual con®gur-
ation.

3.2. Spectral decomposition

Upon using a spectral decomposition of the left elas-
tic Cauchy±Green trial tensor and using the fact that
due to isotropy btr and ttt commute, we have

btr �
X3
A�1
�ltr

A�2mA9 ttt �
X3
A�1

bAmA �38�

Here l tr
A, mA, A= 1,2,3 are the eigenvectors and eigen-

basis of btr, respectively, and bA, A= 1,2,3 are the

principal values of the e�ective Kirchho� stresses
which by use of the vector/matrix notations

etr: �
24 ln ltr

1

ln ltr
2

ln ltr
3

35

b: �
24 b1
b2
b3

35

1: �
24 1
1
1

35

I3: �
24 1

1
1

35

Idev
3 : � I3 ÿ

1

3
1
 1 �39�

are obtained from the relations

b � �1ÿ a�b̂, with b̂ � b̂
vol � b̂

dev
and

b̂
vol � p1, p � K1 � Etr

b̂
dev � b̂

dev,tr ÿ 2GDl
1ÿ a

n, where b̂
dev,tr � 2GIdev

3 � etr

n � b̂
dev

kb̂devk
�40�

These sets of equations can be regarded as the counter-

part of the relations (35) and (37) in the principal
directions. Note, that the above structure for the prin-
cipal Kirchho� stresses is identical to the geometric lin-

ear theory, see e.g. Simo [28].

3.3. Local iteration: two level algorithm

The two unknowns x � �Dl,a�t appearing in Eq. (40)
are obtained from a nonlinear system of equations

r � �r1,r2�t � 0, where

r1 � kb̂
dev,trk ÿ 2GDl

1ÿ a
ÿ

����
2

3

r
�Y0 �Q�q�Dl��� �41a�

(35)
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r2 � ÿa�n a� Dl
S�1ÿ a�m

1

2

�
�Q� Y0�2

3G
� p2

K

�
T�q�Dl��

�41b�

Here Eq. (41a) expresses the yield constraint and Eq.
(41b) is obtained from the update scheme (32c) for the
damage variable. A further constraintÐwhich can lead

to severe numerical di�cultiesÐarises from the fact,
that the variables contained in the vector x are
restricted to lower and upper bounds ai, bi, i = 1,2. In

particular we have 0EDl<1 and naEa < 1. We
are therefore confronted with the following problem:

Find x 2 R2, such that r�x� � 0, aiRx iRbi

i � 1,2
�42�

If the starting point x�k�0� is close enough to the sol-
ution point (assuming that it exists) the problem (42)

can be solved iteratively with a Newton method

x�k�1� � x�k� ÿ �J�k��ÿ1r�k� k � 0,1,2, . . . �43�

where the Jacobian

J � @ r

@x
�

26664
@r1
@x 1

@ r1
@x 2

@r2
@x 1

@ r2
@x 2

37775 �44�

is required at each iteration point.
However, the superior local convergence property of

the Newton method does not necessarily imply a good
global convergence property in the case of improper
starting values, see Johansson et al. [20] for a numeri-

cal example. Therefore, in order to gain more control
and robustness of the iteration process a two-level
strategy is adopted, whereby the two-dimensional pro-

blem (42) is solved by a sequence of one-dimensional
problems. This allows the advantages of various one-
dimensional solution schemes to be combined, e.g. the
superior global convergence properties of a bisection

method or a pegasus method, respectively (see e.g.
Engelin±MuÈ llges and Reuter [30]), with the superior

local convergence property of a Newton method.
The iteration scheme is explained as follows [20]:

®rstly, for given (®xed) x2 we use the one-dimensional

iteration x
�k�1�
1 �x �k�1 �Dx �k�1 , k= 0,1,2,.. until the con-

dition r1�x �k�1 ,x 2� � 0 is satis®ed. However, the solution

x 1�x 2� � argfr1�x 1�x 2�,x 2� � 0g �45�

in general does not satisfy the second condition
r2�x 1�x 2�,x 2� � 0 so that an additional (outer) iteration
x �k�1�2 � x �k�2 � Dx �k�2 , k= 0,1,2,. . becomes necessary.

The basic idea consists now in determining a solution
x1[x2] according to Eq. (45) whenever x2 is modi®ed.
In this manner the two-dimensional problem, Eq. (42),

is converted into a sequence of one-dimensional pro-
blems.

In Table 1 the algorithm is summarized. For deter-

mination of the increment Dxi, i= 1,2 several choices
are possible:

. Bisection method: here the increment is obtained

simply by

Dx �k�i � 1
2 �x min

i ÿ x
�k�
i �, x max

i � x
�k�
i , if

ri�x �k�i � � ri�x max
i � > 0

Dx �k�i � 1
2 �x max

i ÿ x �k�i �, x min
i � x �k�i , else �46�

. Newton method: in this case the increment is calcu-
lated according to

Dx �k�i � ÿ
"

dr
�k�
i

dx i

#ÿ1
r�k�i �47�

thus requiring the derivative of the residual ri. For
i = 2 we have

dr2
dx 2
� @r2
@x 2
� @r2
@x 1
� dx 1

dx 2

Table 1

Two-level algorithm for nonlinear two-dimensional problem

FIND-ZERO(i ):

Object: determine xi such that r1�x 1�x 2�,x 2� � 0 if i= 1 or r2�x 1�x 2�,x 2� � 0, if i = 2

Algorithm:

0. Initialize: k = 0, x (k = 0)
i

1. Change level: If (i= 2) call FIND-ZERO(i ÿ 1)

2. Residual: ri
3. Check tolerance: If vriv < tol, RETURN

4. Determine increment: Dx (k )
i

5. Update: x �k�1�i �x �k�i �Dx �k�i , k=k+ 1, GOTO 1

R. Mahnken / Computers and Structures 74 (2000) 179±200 187



For evaluation of dx1/dx2 we exploit Step 1 of the
algorithm in Table 1 which insures the condition

r1�x 1�x 2�,x 2� � 09
dr1
dx 2
� @ r1
@x 2
� @r1
@x 1

dx 1

dx 2
� 0

The result for the derivative needed for the incre-

ment Eq. (47) is thus summarized as

i � 1:
dr1
dx 1
� @r1
@x 1

�48a�

i � 2:
dr2
dx 2
� @r2
@x 2
ÿ @r2
@x 1
�
�
@r1
@x 1

�ÿ1
� @ r1
@x 2

�48b�

Observe, that the result (48b) is simply obtained by
static condensation of the Jacobian, Eq. (44).

Alternative common iteration methods for one-

dimensional problems are e.g. Regula Falsi, the pega-
sus method, and we refer to Engelin-MuÈ llges [30] for
the speci®c iteration schemes.

4. Equilibrium problem and associated derivatives

4.1. Weak formulation

Denoting jjj as the con®guration ®eld at time n + 1t
for given parameters kkk 2K and using the notation
h � , � i for the L2 dual pairing on B0 of functions, vec-

tors or tensor ®elds, the equilibrium problem as the
classical weak form of momentum at time n + 1t with
spatial quantities reads

Find jjj:g�jjj� � httt:ddi ÿ �g � 0 8du for given kkk 2K �49�

Here the spatial rate of deformation tensor dd induced
by the virtual displacement du is de®ned in the third
part of Eq. (1), and g-:=hB- � dui+hT- � dui@sB desig-

nates the external part of the weak form for the case
of dead loading with dual pairing h � , � i@sB on the
boundary @sB and volume forces B

-
and surface forces

T
-
.

4.2. General concept: directional derivative and
sensitivity operator

Before calculating derivatives of the weak form, Eq.
(49), it is useful to consider the dependencies of some

quantities w.r.t. the con®guration jjj and the material
parameters kkk, e.g. from the de®nition of the defor-
mation gradient F � rXjjj�X,n�1t,kkk� we can write

F � F�jjj�kkk��. However, the plastic part of the defor-
mation gradient at time nt is not dependent on the
actual con®guration, and therefore we have Fp � Fp�kkk�.

Both quantities de®ne the left Cauchy±Green trial ten-
sor, and thus

btr � btr�jjj�kkk�,kkk�9 ttt � ttt�jjj�kkk�,kkk� �50�

where the last relation for the Kirchho� stresses is due
to Eq. (37).
The above relations motivate the de®nitions of the

following operators for any (scalar, vector or tensor
valued) function w�jjj�kkk�,kkk�, which is dependent on the
material parameters both implicitly via the con®gur-

ation jjj and explicitly: ®rstly, we introduce the stan-
dard directional derivative (Gateaux) operator

@Dw � dw

djjj
� Du � d

dE
fw�jjj�kkk� � EDu,kkk�gE�0 �51�

necessary for linearization of w. Secondly, upon using
the notation vkkk�djjj=dkkk we de®ne a sensitivity operator

@kkkw � @jkkkw� @ p
kkkw �52a�

where

@jkkkw � dw

djjj
� vkkk � d

dE
fw�jjj�kkk� � Evkkk,kkk�gE�0 �52b�

@ p
kkkw � dw��,kkk�

dkkk
��

lim Dki4 0
w�jjj�kkk�,ki � Dki � ÿ w�jjj�kkk�,ki �

Dki

�np

i�1

�52c�

which de®nes the total derivative @kkkw� dw=dkkk. Note,
that the term @jkkkw has the same structure as @Dw and
can thus be obtained from the results for linearization
by simply exchanging Du with vkkk. The second term

@ p
kkkw basically excludes the implicit dependence of kkk via

the con®guration at the actual time (or load) step
n + 1t and will subsequently be called the partial par-

ameter derivative. Applying the above concept to the
Kirchho� stresses we obtain

@Dttt �L#
Dttt� 2sym�ttt � ltD�

where L#
Dttt � 2

@ttt
@g[

:
1

2
L[

Dg[ � c:dD �53a�

@kkkttt �L#
kkkttt� 2sym�ttt � ltkkk� � @ p

kkkttt

where L#
kkkttt � 2

@ttt
@g[

:
1

2
L[

kkkg[ � c:dkkk �53b�

Here the spatial rate of deformation tensors dD and dkkk
induced by the linearization displacement Du and con-
®guration sensitivity vkkk, respectively, are de®ned in Eq.
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(1). Furthermore, c: � 2@ttt=@g[ is the fourth-order
algorithmic spatial operator, and as alluded to above,

the partial parameter derivative @ p
kkkttt excludes the im-

plicit dependence of kkk via the con®guration jjj. Finally,
upon using the relations

@Ddd � ÿsym�g[ � ld � lD�

@kkkdd � ÿsym�g[ � ld � lkkk� �54�

we obtain the associated derivatives of the weak form

as

@Dg�jjj� � h�c:dD�:dd � lD � ttt:ddi

@kkkg�jjj� � h�c:dkkk�:dd � lkkk � ttt:dd � @ p
kkkttt:ddi �55�

The ®rst term is used for computation of an increment

Du within a Newton iteration step for iterative solution
of the weak form, and the second term is used for
computation of the con®guration sensitivity vkkk within

an iteration step for minimization of some least-
squares functional.
The next task consists in determination of the algo-

rithmic spatial tangent operator c and the partial par-

ameter derivative of Kirchho� stresses @ p
kkkttt, consistent

with the integration scheme of Section 3.

4.3. Spatial algorithmic tangent operator

For the Kirchho� stress tensor with structure of the

right side of Eq. (38) the spatial algorithmic tangent
operator c of Eq. (53) is obtained as (see e.g. Simo
[28])

c �
X3
A�1

X3
B�1

dbA
detr

B

mA 
mB �
X3
A�1

2bA
dmA

dg[
�56�

where the expression for dmA/dg
[ is presented in Simo

[28]. The starting point for determination of the quan-
tities dbA/de

tr
B is the representation (40). Using vector

notation we have

db

detr
� �1ÿ a� d

detr
�b̂vol � b̂

dev,tr�

ÿ �b̂vol � b̂
dev,tr� 
 da

detr

ÿ 2G

�
n
 dDl

detr
� Dl

dn
detr

�
�57�

For determination of dDl/detr and da/detr we consider
the local problem (41) as an implicit function and con-
clude

r�etr,x�etr�� � 09
dr

detr
� @ r

@etr
� @r

@x

dx

detr
� 0

9
dx

detr
� ÿJÿ1 @ r

@etr

�58�

where J is the Jacobian, Eq. (44). Upon de®ning�
d11 d12
d21 d22

�
� 1

det J

�ÿ2GJ22 J12h
2GJ21 J11h

�

where h � Dl
�1ÿ a�m

Tp

S
�59�

the following results are obtained after some algebra

dDl
detr
� d11n� d121

da
detr
� d21n� d221 �60�

Furthermore, employing the results

dn
detr
� 2G

kb̂dev,trk
�Idev

3 ÿ n
 n�

d

detr
�b̂vol � b̂

dev,tr� � K1
 1� 2GIdev
3 �61�

expands the expression (57) as

db

detr
� a11
 1� a2Idev

3 � a3n
 n� a4n
 1� a51
 n

where a1 � �1ÿ d �Kÿ pd22

a2 � 2G

 
1ÿ aÿ 2GDl

kb̂dev,trk

!

a3 � �2G �
2Dl

kb̂dev,trk
ÿ 2Gd11 ÿ kb̂

dev,trkd21

a4 � ÿ2Gd12 ÿ kb̂
dev,trkd22

a5 � ÿpd21 �62�

Thus, due to the nonsymmetry of the above expression
the algorithmic tangent operator (56) exhibits also a

nonsymmetric structure contrary to the hyperelastic±
plastic tangent operator (30). This is a consequence of
the complete coupling between elasticity and damage
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as introduced in Eq. (6), and is di�erent to the presen-
tation by Steinmann et al. [15], where only the elastic
isochoric part of the free energy is coupled to damage.

4.4. Partial parameter derivative of Kirchho� stresses

4.4.1. General remarks

Similar as to the material operator c, Eq. (56), the
partial parameter derivative of Kirchho� stresses
appearing in Eq. (53) consists of two parts (see e.g.

[27]):

@ pttt
@kkk
�
X3
A�1

mA 
 @
pbA
@kkk
�
X3
A�1

bA
@ pmA

@kkk
�63�

The expressions necessary for determination of @ pttt=@kkk
are summarized in Tables 2 and 3, respectively. In

Table 2 those terms are recalled from Mahnken and
Stein in [27], which are valid for any model formulated
in principal directions. Table 3 contains the expressions
resulting from the speci®c model formulation in

Section 2.
From the results of a pre-processing part in Tables 2

and 3, respectively, it can be seen that calculation of

@ pttt=@kkk also involves expressions for the parameter de-
rivative of state variables dnq=dkkk, dna=dkkk, dnCÿ1p =dkkk at
the previous time step. Therefore, after having solved

the linear problem in the second equation of Eq. (55)
for vkkk, it becomes necessary to determine dn�1q=dkkk,
dn�1a=dkkk, dn�1Cÿ1p =dkkk at the actual time step in a post-

processing part, in order to make them available for
the next time step.
As already mentioned, all expressions of Table 2 are

derived and explained in Mahnken and Stein [27]. In

what follows, we will brie¯y comment on the ex-
pressions of Table 3.

4.4.2. Pre-processing
The starting point for determination of @ pbA=@kkk in

Eq. (63) is the representation (40). Using vector nota-

tion analogously to Eq. (57) we have

@ pb

@kkk
� �1ÿ a� @

p

@kkk
�b̂vol � b̂

dev,tr�

ÿ �b̂vol � b̂
dev,tr� 
 @

pa
@kkk

ÿ 2G

�
n
 @

pDl
@kkk
� Dl

@ pn
@kkk

� �64�

The determination of @ pDl=@kkk and @ pa=@kkk is con-
tained in the following result: we consider the local

problem (41) as an implicit function and derive

r�kkk,x,nq,na,etr� � 09
dr

dkkk
� @r

@kkk
� @r

@x

dx

dkkk
� 0

9
dx

dkkk
� ÿJÿ1 @ r

@kkk

�65�

for the total derivative. Here J is the Jacobian (44) and
the notation

Table 2

Large strain problems formulated in principal directions: partial parameter sensitivity for the Kitchho� stresses and the parameter

sensitivity of right Cauchy±Green plastic strain (material independent part)

(a) Partial parameter sensitivity for Kitchho� stresses (pre-processing) input: nCÿ1p

@ p
kkkbtr � L#

kkkbtr�F � @ nkkkCÿ1p � Ft

@ p
kkke

tr
A� 1

2
1
�ltr

A�2
mA:@

p
kkkbtr, A= 1,2,3

for @ p
kkkbA: see material-dependent part in Table 3

@ p
kkkmA � @ btr mA:@

p
kkkbtr, A= 1,2,3 (for @btrmA see Ref. [31])

@ p
kkkttt �

P3
A�1@

p
kkkbAmA�

P3
A�1bA@

p
kkkmA

(b) Parameter sensitivity for the internal strain-like variables (post-processing) input: nCÿ1p , vkkk
lkkk � @ kkkF � Fÿ1, @ kkkF� @ vkkk

@X

@ kkkbtr � L#
kkkbtr�2sym�lkkk � btr�, where L#

kkkbtr�F � @ nkkkCÿ1p � Ft

@ kkketr
A � 1

2
1
�ltr

A�2
mA:@ kkkbtr

for @ kkkeel
A: see material-dependent part in Table 3

@ kkklel2

A � 2lel2

A @ kkke
el
A, A= 1,2,3

@ kkkmA � @ btr mA:@ kkkbtr, A= 1,2,3 (for @btrmA see Ref. [31])

@ kkkbel � P3
A�1�@ kkklel2

A mA�lel2

A @ kkkmA�
@ kkkCÿ1p � ÿ2sym�Fÿ1 � @ kkkF �n Cÿ1p ��Fÿ1 � @ kkkbel � Fÿt
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@r

@kkk
� @ r

@kkk
� @r

@ nq

dnq

dkkk
� @ r

@ na
dna
dkkk
� @r

@etr

detr

dkkk
�66�

has been used. The result for @ px=@kkk is then obtained

from Eq. (65) by exchanging detr=dkkk with @ petr=@kkk and
is given in the pre-processing part of Table 3. Using
this result, the ®nal expression for @ pbA=@kkk is obtained

from Eq. (64) and is also summarized in the pre-pro-
cessing part of Table 3.

4.4.3. Post-processing
For determination of dn�1q=dkkk, dn�1a=dkkk,

dn�1Cÿ1p =dkkk in Table 3 ®rstly dDl=dkkk and da=dkkk are
calculated from Eq. (65). The detailed expressions are

given in the post-processing part of Table 3. Then,
from Eq. (32b) we have

dq

dkkk
� dnq

dkkk
�

����
2

3

r
dDl
dkkk

�67�

For determination of dn�1Cÿ1p =dkkk in Table 2 we need

deel=dkkk, where

eel � etr ÿ Dl
1ÿ a

n �68�

(see Mahnken and Stein [27], Proposition 5.8).
Di�erentiation of Eq. (68) w.r.t. kkk yields after some

algebra the result presented in the post-processing part
of Table 3.

5. Plane sheet with two notches

A plane sheet with two notches is considered with
geometry as shown in Fig. 1. The material of the speci-
men is a mild steel, Baustahl St52 due to the German
regulations for construction steel. This example was

investigated experimentally in the context of the ger-
man research network Sonderforschungsbereich 319
(SFB 319): `Sto�gesetze fuÈ r das inelastische Verhalten

metallischer Werksto�eÐEntwicklung und
Anwendung' University of Braunschweig, Germany. In
particular spatially distributed data were obtained with

an optical method, a grating method (see Andresen and
HuÈ bner [24] and Bergmann et al. [25]). To this end a
grating is positioned on the surface as shown in Fig. 2.
This is photographed with a digital camera at consecu-

tive observation states during the displacement con-
trolled experiment with load sizes according to Table
4. Finally the data are analyzed digitally, thus leading

to highly resolved spatially distributed data for displa-
cement ®elds.
The numerical simulation of this plane stress

example is performed with a plane stress element pre-
sented by Steinmann et al. [32]. This formulation
allows the incorporation of general 3D constitutive

models without any plane stress constraints. Instead,
the constraint t33=0 is satis®ed in a weak sense. In
our simulation a quadratic nine node element has been

used. The spatial discretization of the sample is shown
in Fig. 1.
The material is assumed to be elastoplastic J2-¯ow

theory, combined with isotropic damage and nonlinear

isotropic hardening according to Section 2. Integration
is performed with the algorithm described in Section 3
in N= 205 load steps.

The input data for the identi®cation process consists
of displacements in x- and/or y-direction at di�erent,
arbitrarily chosen points near the notch region, so that

the total number of data at each observation state is
nxdat=51. The total number of observation states is
ntdat=7 according to Table 4.
The object is to identify the six parameters Y0, b, c,

S, m, E1 of Eq. (19) which characterize the inelastic
behavior of the material. Two elastic parameters were
pre-determined as E = 20600 kN/cm2 and n=0.3 for

Young's modulus and Poisson's ratio, respectively, and
the parameter E1 was set to 0.01. In this respect, the
following objective function of least-squares type is

examined:

f �kkk� � 1

2

Xntdat�7

i�1

Xnxdat�51

j�1
�uij ÿ �u ij �2�

1

2

Xntdat�7

i�1
wi�Fi ÿ �Fi �24 min kkk

�69�

where here uij denotes the displacement in either x- or

Fig. 1. Plane sheet with two notches: geometry and discretiza-

tion.
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y-direction and Fj the total tension load acting on the

specimen. w is a weighting factor and is set to

2 � 10ÿ8. For minimization of the least-squares func-

tional (69) an algorithm due to Bertsekas [33] is used,

where the iteration matrix is obtained from the update

rule for the BFGS formula. Further details of the al-

gorithm are explained in e.g. Mahnken and Stein

[26,27].

The starting point and the results of the optimiz-

ation process for the material parameters are given in

Table 5. The result has been obtained after 18 iteration
steps. For comparison also the results of [27] are

recalled, which are obtained from identi®cation of a

di�erent experiment with the same material, however
from a di�erent production charge. This di�erence in

the specimen causes some type of scattering and is
regarded as the main reason for the di�erences in the

results. A larger amount of data would become necess-

ary in order to apply a stochastic approach to this
type of model uncertainty [34,35].

In Fig. 3 the total load versus the upper displace-

ment is depicted for both for simulation and exper-

iment, which reveals a very good agreement. In Figs.
4±6 we compare the contours for the displacements u

Fig. 2. Plane sheet with two notches: photography of the sample with grating on the surface.

Table 4

Plane sheet with two notches: sizes of displacement at the top

of the sample at di�erent states of optical observation

NLST 1 6 10 15 18 21 28

Load size (mm) 0.0 0.44 1.0 2.0 3.0 4.0 5.3
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and v, respectively, at the observation states
NSLT = 6 and NSLT= 28 of Table 4 in the grating

region. Again, a very substantial agreement between
experimental and simulated data is observed.

6. Summary

In this work a model for plasticity coupled to
damage formulated in the plastic intermediate con-
®guration has been proposed. The formulation is
based on complete coupling between the elastic part of

the free energy function and the damage variable. As a

consequence an evolution equation for the damage

variable is obtained which is proportional to the accu-

mulated plastic strain rate and which is in accordance

with the analytical investigations for ductile growth of

voids by Rice and Tracey [17]. Furthermore it pre-

serves an increase of damage evolution with increasing

triaxiality ratio, which is in agreement with the exper-

imental observation that the measured ductility at frac-

ture decreases as the triaxiality ratio increases [2,3]. In

this respect the formulation is regarded as an import-

ant modi®cation to the presentation by Steinmann et

al. [15], where only the elastic isochoric part of the free

energy function is coupled to damage.

Furthermore, issues of thermodynamic consistency,

continuous tangent operator, and algorithmic tangent

operator have been discussed. Due to the complete

coupling of elasticity and damage in the free energy

function, the algorithmic tangent operator becomes

non-symmetric. Furthermore, for the discretized consti-

tutive problem a robust iteration scheme with a two-

level algorithm is proposed. A gradient based optimiz-

ation algorithm is used for minimizing the associative

least-squares functional for parameter identi®cation,

and to this end the associated sensitivity analysis con-

Fig. 3. Plane sheet with two notches: load versus displacement for simulation and experiment.

Table 5

Plane sheet with two notches: starting and obtained values for

the material parameters of a mild steel Baustahl St52

Starting Solution Ref. [27]

Y0 (N/mm2) 300.0 351.17 360.26

b 10.0 7.223 3.95

c (N/mm2) 800.0 355.8 416.51

S 10.0 8.068 ±

m 0.4 0.499 ±

E1 0.4 0.405 ±
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Fig. 4. Plane sheet with two notches: contours of displacements v for simulation (top) and experiment (bottom) at observation state

6 in the grating region.

R. Mahnken / Computers and Structures 74 (2000) 179±200196



Fig. 5. Plane sheet with two notches: contours of displacements v for simulation (top) and experiment (bottom) at observation state

28 in the grating region.
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Fig. 6. Plane sheet with two notches: contours of displacements u for simulation (top) and experiment (bottom) at observation

state 28 in the grating region.
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sistent with the integration scheme has been described.
In the example experimental data obtained with a

grating method were used, in order to determine the
material parameters of the model, thus leading to very
good agreement between numerical simulation and ex-

perimental observations.
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